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Part 2: Applications
Presented by Alfonso J. Martinez
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Applications Outline

qExample: linear regression

qThree software programs: 
qSAS, Mplus, R

qAnalysis presented loosely following the WAMBS checklist (Depaoli & Van de Schoot, 
2017; Psychological Methods)

qWe will focus on the basics, including model setup and interpreting the results
qTopics we won’t cover include model specification, parameterization, model 

identification, missing data, and model fit
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qContains slides and 
code for the 
example and 
different software 
programs

Check Out Our Workshop Website!!  

https://wpa2024bayesian.ajmquant.com/ 

https://wpa2024bayesian.ajmquant.com/
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Software

PROC GENMOD

R packages that can estimate Bayesian models
- Stan
- JAGS
- MCMCpack
- Nimble
- BayesianTools
- Blavaan (Bayesian SEM)
- brms
- A comprehensive list can be found here

ESTIMATOR = BAYES

The Mplus and SAS files for the 
examples today will be uploaded 
to the workshop webpage in a few 
days

https://cran.r-project.org/web/views/Bayesian.html
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The WAMBS Checklist

Depaoli, S., & Van de Schoot, R. (2017). Improving Transparency and Replication in 
Bayesian Statistics: The WAMBS-Checklist. Psychological Methods, 22(2), 240-261. 
http://dx.doi.org/10.1037/met0000065

q Questionnaire designed to guide 
researchers through a Bayesian analysis

q 10 step checklist 

q Four categories
q Considerations before model estimation
q Considerations after model estimation but 

before inspection of results
q Understanding the influence of priors
q Interpretation of results

http://dx.doi.org/10.1037/met0000065
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The WAMBS Checklist

Figure taken from Depaoli, S., & Van de 
Schoot, R. (2017). Improving Transparency 
and Replication in Bayesian Statistics: The 
WAMBS-Checklist. Psychological Methods, 
22(2), 240-261. 
http://dx.doi.org/10.1037/met0000065

http://dx.doi.org/10.1037/met0000065
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Example 1: Linear Regression
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Linear Regression
q The goal of a linear regression analysis is to describe the influence a set of 

independent variables (predictors) 𝑋!, … , 𝑋" have on a continuous dependent 
(response) variable 𝑌# 

𝑌! = 𝛽" + 𝛽#𝑋!# + 𝛽$𝑋!$ +⋯𝛽%𝑋!% + 𝜖!
q The response variable 𝑌! is modeled as a linear combination of the 

predictors 𝑋", … , 𝑋#
q Two types of parameters in a linear regression model 

q The 𝜷 terms are the regression coefficients that describe the influence 
a given predictor has on the outcome

q A random error term 𝜖! ∼ 𝑁(0, 𝜎$) that captures any random source of 
variability →	main interest is in 𝜎$ (amount of variability across a 
sample of 𝑛 observations)

q In real data applications, 𝜷 and 𝜎$ are unknown and must be estimated 
from the data available !! Even though 𝜷 and 𝜎! are unknown they are not random !!



q Assuming normality of the residuals, i.e., 𝜖# ∼ 𝑁(0, 𝜎$) then 𝑌# will be normally 
distributed random variable with mean 𝜇!  and variance 𝜎"

𝑌! ∣ 𝑿! ∼ 𝑁(𝜇! , 𝜎$)
where 𝜇# =	𝛽% + 𝛽!𝑋#! + 𝛽$𝑋#$ +⋯𝛽"𝑋#"

Aside: Non-Bayesian Estimation of the Linear Regression Model 

q In least squares (LS) estimation, the beta coefficients 𝜷	are estimated by 
minimizing the residual sums of squares with respect to 𝜷: 

𝑆 𝜷 =3
!5#

6

𝑦! − 𝜇! $

6𝜷78 = 𝑿9𝑿 :#𝑿9𝒚

q Under LS, we can obtain an explicit formula for the regression coefficients 
and residual variance:

8𝜎78$ =
𝑆 𝜷

𝑛 − 𝑝 − 1

Note: minimizing 𝑆 𝜷  
is equivalent to 
maximizing the 
likelihood function 



q Example of LS using simulated data. The model is 

Motivating Bayes: A Simulation Study

𝑌! = 𝛽" + 𝛽#𝑋!# + 𝜖!
qData generating specifics → 	𝑛 = 150; 	𝛽#= 0; 𝛽$ = 1; 𝜎$ = 1

Results from Least Squares Estimation (via lm)

Estimate SE 95% Conf. Int.

𝛽% 0.123 0.082 (-0.039, 0.285)

𝛽! 0.917 0.073 (0.774, 1.061)

𝜎$ 1.006

The standard errors and 
confidence intervals are 
interpreted with respect to 
the sampling distributions 
of the parameters

q Conceptually, it can be helpful to think of repeated 
sampling as repeating an experiment many, many 
times under the exact same conditions but with a new 
sample each time (and parameter estimates are saved 
each time as well) → histogram is an estimate of the 
theoretical sampling distribution

q Under repeated sampling, the SE is the standard 
deviation of the sampling distribution

q Under repeated sampling, 95% of CIs would contain 
the true population values

These 𝛽 estimates 
are the values that 
minimize the 
residual sums of 
squares 𝑆 𝜷
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q Here the 
“experiment” 
was repeated 
500 times, each 
time with a new 
dataset (but same 
underlying model)

q I saved the 
estimates of 𝛽! 
after each 
replication until all 
500 replications 
were complete

q This is the 
histogram of the 
500 𝛽! estimates

Motivating Bayes: The Sampling Distribution of 𝜷𝟏
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q The mean is very 
close to the true value 
𝛽! = 1

q The SD is somewhat 
close to the SE value 
from previous slide (it 
gets better as 𝑛 gets 
larger)

q BTW, the theoretical 
SD is !

"
→ !

!#$
= 

0.08164966

q Thus, the mean and 
SE from the previous 
slide are estimates of 
the mean and SD 
from this 
hypothetical 
sampling 
distribution!
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The mean is 0.998!

The SD is 0.083!

Motivating Bayes: The Sampling Distribution of 𝜷𝟏
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q Here the 
“experiment” 
was repeated 
500 times, each 
time with a new 
dataset (but same 
underlying model)

q Each dot is the 
estimate of 𝛽! and 
the bars represent 
the 95% CIs 
intervals based on 
that replication

q Guess how many 
of the 500 datasets 
had intervals that 
contained 𝛽! = 1?

Motivating Bayes: What About the Confidence Interval?
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q Here the 
“experiment” 
was repeated 
500 times, each 
time with a new 
dataset (but same 
underlying model)

q Each dot is the 
estimate of 𝛽! and 
the bars represent 
the 95% CIs 
intervals based on 
that replication

q Guess how many 
of the 500 datasets 
had intervals that 
contained 𝛽! = 1?

474 out of 500 (94.8%)!BTW, the R code for reproducing the 
motivating example will be available at 
https://wpa2024bayesian.ajmquant.com/ 

Motivating Bayes: What About the Confidence Interval?

https://wpa2024bayesian.ajmquant.com/
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Motivating Bayes: Recap

q As we just saw, the point estimates, SE, and CIs are interpreted with respect to 
a hypothetical sampling distribution which relies on the notion of repeated 
sampling

q The idea of an infinitely repeating “experiment” is not intuitive in many 
contexts
q Intuitive if the “experiment” is flipping a coin
q Not intuitive if the “experiment” is a study that investigates effects of environmental factors on 

mental health

q Also, notice that at no point did I mention that a researcher has the ability to 
incorporate their domain knowledge and expertise into the analysis

q Bayesian estimation [of the linear regression model] addresses these issues
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Bayesian Estimation of the Linear Regression Model 

qRecall: the parameters of interest in the linear regression model are 𝜷 and 𝜎$

qIn Bayesian estimation, we treat 𝜷 and 𝜎$ as random variables that have 
distributions

Everything we want to know about 𝜷 and 𝜎! based on the available 
data (and our prior beliefs of 𝜷 and 𝜎!) is contained in the posterior

Posterior distribution 
distribution of 𝜷 and 
𝜎!	given data 𝒚

𝑃 𝜷, 𝜎$ 𝒚 ∝ 𝐿 𝜷, 𝜎$; 𝒚 𝑃 𝜷 𝑃(𝜎$)

Likelihood function 
(the information 
contained in the 
data)

Prior 
distributions of 
𝜷 and 𝜎!, 
respectively 

The goal is to update our beliefs about 𝜷 and 𝜎" in light of the data we 
collected

qThis is encoded in Bayes’ theorem
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Steps of a Bayesian Analysis

qSpecify the likelihood 
qLinear regression model

q Identify the parameters of interest
q𝜷 and 𝜎$

qSpecify the priors

qSpecify and estimate the model with statistical software

qCheck diagnostics to see if results are trustworthy/reasonable

q Interpret results (create tables, graphs, construct credible intervals, etc.)

Aside: For the linear regression model, 
there are prior distributions that will give 
us closed form (aka “nice”) posteriors of 
𝜷 and 𝜎! [conjugate priors] but this topic 
is beyond the scope of this presentation 
(see Gelman et al., 2004 for more details)

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). 
Bayesian data analysis (2nd ed.). London, UK: Chapman & 
Hall.



Application to Counseling Psychology: Healthcare Career Interests

q Yanez, G. F., Martinez, A. J., Ali, S. R., & Son, Y. (under review). Sociopolitical 
development and healthcare interests among rural youth: Is gender a moderator?
q Note: As the paper is currently undergoing peer-review, the data used in this application is a simulated version of the real dataset. 

q Replication of Ali et al. (2021) which examined differences in sociopolitical 
development and healthcare career-related outcomes in rural youth

q 𝒏 = 𝟖𝟓 8th graders from a middle school in the rural Midwest participated in the 
study 

q This example is a simplified version of the models tested in the paper 
q Four variables: sociopolitical development (SPD), healthcare career interest 

(HCI), healthcare outcome expectations (HCOE), healthcare self-efficacy (HCSE)

Ali, S. R., Loh Garrison, Y., Cervantes, Z. M., & Dawson, D. A. (2021). Sociopolitical 
development and healthcare career interest, self-efficacy, and outcome expectations 
among rural youth. The Counseling Psychologist, 49(5), 701-727.
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Application to Counseling Psychology: Healthcare Career Interests

q The linear regression model for this analysis is

Ali, S. R., Loh Garrison, Y., Cervantes, Z. M., & Dawson, D. A. (2021). Sociopolitical development and 
healthcare career interest, self-efficacy, and outcome expectations among rural youth. The Counseling 
Psychologist, 49(5), 701-727.

HCI! = 𝛽" + 𝛽#SPD! + 𝛽$HCSE! + 𝛽;HCOE! + 𝜖!
Symbol Variable Name Variable Description Parameter

HCI
Healthcare career 

interest
Degree to which students are interested 

in pursuing healthcare careers 

SPD
Sociopolitical 
development

Youth’s self-perception of their ability to 
make an impact on policy decisions at 

the community level
𝛽! 

HCSE Self-efficacy
Confidence in doing healthcare career-

related tasks 𝛽$

HCOE Outcome expectations
Students' beliefs about how their actions 
will impact their future school and career 

choices
𝛽.

Note: all variables come from self-report measures; 
all variables except SPD were measured on a 6-point 
Likert scale (SPD was measured on a 5-point Likert 
scale)
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Choosing priors
qThere are five parameters for which we need to specify priors for:

q𝛽% (intercept)
q𝛽! (effect of SPD on HCI)
q𝛽$ (effect of HCSE on HCI)
q𝛽. (effect of HCOE on HCI)
q𝜎$ (residual variance; variance unexplained by the other three predictors)

qIn general, priors should match the support of the parameters
qFor the 𝜷 parameters, any distribution with support over the real line may be 

reasonable (e.g., a normal distribution)

qSince 𝜎$ shouldn’t be negative, our prior should have support over the 
positive real line (e.g., a normal distribution is not appropriate for 𝜎$)
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Prior 95%

𝑁(0, 0.1) ±0.520

𝑁(0, 1) ±1.644

𝑁(0, 0.10) ±5.201

𝑁(0, 100) ±16.448

Examples of Different Normal Priors for 𝛽! (Effect of SPD on HCI) 

−10 −5 0 5 10
Parameter

D
en
si
ty
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Prior 95%

𝑁(0, 0.1) ±0.520

𝑁(0, 1) ±1.644

𝑁(0, 0.10) ±5.201

𝑁(0, 100) ±16.448

Examples of Different Normal Priors for 𝛽! (Effect of SPD on HCI) 

−10 −5 0 5 10
Parameter

D
en
si
ty

Most informative
Interpretation: Our prior 
belief about 𝛽" is that there 
is no effect of SPD on HCI 
(centered around 0) but if 
there is an effect, there is 
95% chance the effect is 
between ±0.520

Less variability (i.e., 
smaller prior variance) 
more prior certainty 
about the effect of SPD 
on HCI
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Prior 95%

𝑁(0, 0.1) ±0.520

𝑁(0, 1) ±1.644

𝑁(0, 0.10) ±5.201

𝑁(0, 100) ±16.448

Examples of Different Normal Priors for 𝛽! (Effect of SPD on HCI) 

−10 −5 0 5 10
Parameter

D
en
si
ty

Least informative
Interpretation: Our prior 
belief about 𝛽" is that there 
is no effect of SPD on HCI 
(centered around 0) but if 
there is an effect, that effect 
could anywhere between 
± 16.448

More variability (i.e., 
larger prior variance) 
more uncertainty about the 
effect of SPD on HCI

BTW, the values we specify 
for the priors are called 
hyperparameters – you can 
put priors on these too!
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Examples of Different Normal Priors for 𝛽! (Effect of SPD on HCI) 

−10 −5 0 5 10
Parameter

D
en
si
ty

Prior 95%
𝑁(0.173, 0.69$) (0.059,	0.286)

q This prior was constructed 
by using the results of 
previous research [e.g., Ali 
et al. (2021)]

q Specifically, we took the 
point estimate of 0.173 as 
the prior mean and the 
bootstrap SE of 0.69 to 
define the prior variance of 
0.692

q Meta-analysis approach

Much more informative 
than the others
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Examples of Different Normal Priors for 𝛽! (Effect of SPD on HCI) 

−10 −5 0 5 10
Parameter

D
en
si
ty

q A good strategy to 
evaluate the impact of the 
priors on results is to 
conduct sensitivity 
analysis where the same 
model is fit multiple times 
with different priors

q We will see this in action 
in a few minutes

q Key takeaway is that you 
get to choose the prior 
and it can be sourced from 
a variety of places!
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Examples of Different Inverse Gamma Priors for 𝜎"

0.0 2.5 5.0 7.5 10.0
Parameter

D
en
si
ty

Since 𝜎$ can’t be negative, the prior for the variance need to 
reflect this!

Prior

𝐼𝐺(10, 5)

𝐼𝐺(10, 10)

𝐼𝐺(10, 30)

𝐼𝐺(10, 50)

q The IG distribution is 
characterized by a shape 
and scale parameter)

q Today we will use default 
priors specified by the 
software
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Specifying the Model in R (brms) with Default Priors

require(brms) # load the brms package
fit_hci <- brm(
      data = HCI_Data, # the dataset with the four variables
            family = gaussian(),
            hci ~ 1 + SPD + HCSE + HCOE, 
      iter = 5000, 
            seed = 2024
      )
summary(fit_hci)

q The brms (Bürkner, 2017) package provides an interface to fit Bayesian generalized (non-)linear multivariate 
multilevel model

q It is a wrapper for Stan, a popular program that uses MCMC to estimate Bayesian models
q Full code will be available at https://wpa2024bayesian.ajmquant.com/ 
q By default, brms uses flat priors for the regression slopes and 𝑡 distributions for the intercept/SD

q In the data line, we tell R what the name of our dataset is
q The family line is used to specify a linear regression model

q Other options include family = poisson() for Poisson regression or family = bernoulli() for 
logistic regression, etc. 

q The iter = line specifies the number of MCMC iterations (by default, half are discarded as burn-in)
q The seed = line sets a seed value so we can replicate the analysis and get the same results
q The summary(fit_hci) line returns a processed summary of the analysis

HCI% = 𝛽& + 𝛽!SPD% + 𝛽$HCSE% + 𝛽'HCOE% + 𝜖%

By default, brms implements 4 chains, this may or may not be more 
than enough depending on your specific model

https://wpa2024bayesian.ajmquant.com/
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Visualizing the Posteriors & Diagnostic Checks
q Left panel shows the posterior 

distribution of each parameter
q Everything we want to 

know about each 
parameter is contained in 
its distribution!

q Right panel shows the trace 
plots of the MCMC for each 
parameter. Looks like we got 
good mixing!

q PSRF for each parameter was 
1.00 (up to 2 digits of precision) 
indicating chain convergence

q Diagnostics look good, so can 
go ahead and interpret the 
results 

q BTW, there are more 
sophisticated ways to check for 
convergence, this is just the 
start
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Example of Chains that Haven’t Converged
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q These issues usually occur when there 
are multiple modes in the posterior 
(e.g., mixture models)

q It indicates that the chains are 
exploring different parts of the 
parameters space

This is not what we want to see!  
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HCI! = 𝛽" + 𝛽#SPD! + 𝛽$HCSE! + 𝛽;HCOE! + 𝜖!
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Posterior distribution for 𝛽" 

q Given our data of 𝑛 = 85 middle schoolers, there 
is there is a 0.95 probability that the effect of SPD 
on HCI (𝛽") is between -0.089 and 0.373 with an 
average effect of 0.140

q Since this interval contains 0, it is possible that 
there is not effect of SPD on HCI

Results and Interpretation

Bayesian Output with Default Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.349 0.772 (-1.186, 1.877)

𝛽! 0.140 0.116 (-0.089, 0.373)

𝛽$ 0.374 0.130 (0.118, 0.628)

𝛽. 0.293 0.116 (0.062, 0.519)

𝜎 0.841 0.066 (0.723, 0.980)
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Results and Interpretation

HCI! = 𝛽" + 𝛽#SPD! + 𝛽$HCSE! + 𝛽;HCOE! + 𝜖!
Posterior distribution for 𝛽! 

q Given our data, there is there is a 0.95 probability 
that the effect of HCSE on HCI (𝛽!) is between 0.118 
and 0.628 with an average effect of 0.374

q Interpretation: holding all other variables constant, 
a one unit increase in HCSE is associated with a 
0.118 to 0.628 unit increase in HCI
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D
en

si
ty

Notice that 0 is not included in the 95% 
credible interval

Bayesian Output with Default Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.349 0.772 (-1.186, 1.877)

𝛽! 0.140 0.116 (-0.089, 0.373)

𝛽$ 0.374 0.130 (0.118, 0.628)

𝛽. 0.293 0.116 (0.062, 0.519)

𝜎 0.841 0.066 (0.723, 0.980)
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Bayesian Output with Default Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.349 0.772 (-1.186, 1.877)

𝛽! 0.140 0.116 (-0.089, 0.373)

𝛽$ 0.374 0.130 (0.118, 0.628)

𝛽. 0.293 0.116 (0.062, 0.519)

𝜎 0.841 0.066 (0.723, 0.980)

Results and Interpretation

HCI! = 𝛽" + 𝛽#SPD! + 𝛽$HCSE! + 𝛽;HCOE! + 𝜖!
Posterior distribution for 𝛽# 

q Given our data, there is there is a 0.95 probability 
that the effect of HCOE on HCI (𝛽#) is between 0.062 
and 0.519 with an average effect of 0.293

q Interpretation: holding all other variables constant, 
a one unit increase in HCOE is associated with a 
0.062 to 0.519 unit ncrease in HCI

Notice that 0 is not included in the 95% 
credible interval
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Results and Interpretation

HCI! = 𝛽" + 𝛽#SPD! + 𝛽$HCSE! + 𝛽;HCOE! + 𝜖!
Posterior distribution for 𝜎 

q Because 𝜎 is treated as a random variable, it also 
has a posterior distribution

q Uncertainty about the uncertainty

q Here, there is a 0.95 probability the population 𝜎 is 
between 0.723 and 0.980

0

2

4

6

0.7 0.8 0.9 1.0 1.1
Residual Standard Error

D
en

si
ty

Bayesian Output with Default Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.349 0.772 (-1.186, 1.877)

𝛽! 0.140 0.116 (-0.089, 0.373)

𝛽$ 0.374 0.130 (0.118, 0.628)

𝛽. 0.293 0.116 (0.062, 0.519)

𝜎 0.841 0.066 (0.723, 0.980)
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Quick Aside: Least Squares vs Bayesian Analysis

Results are numerically similar but conceptually different! 
Least Squares Bayesian

q The 𝛽 estimates are the values that minimize the 
residual sum of squares

q The standard errors of 𝛽 is refers the sampling 
distribution of 𝛽 under repeated sampling

q Under repeated sampling, 95% of CIs would 
contain the true population 𝛽 values

q No way to incorporate your domain expertise 
into the analysis

q Given the observed data, the probability that 𝛽 
between (L, U) is 0.95 → 𝐿 ≤ 𝛽 ≤ 𝑈 is a 95% 
credible interval

q The posterior SD is the SD of the posterior 
distribution of 𝛽, not that of a hypothetical 
sampling distribution

q You have control over how much influence you 
incorporate into analysis 

Bayesian Output with Default Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.349 0.772 (-1.186, 1.877)

𝛽! 0.140 0.116 (-0.089, 0.373)

𝛽$ 0.374 0.130 (0.118, 0.628)

𝛽. 0.293 0.116 (0.062, 0.519)

𝜎 0.841 0.066 (0.723, 0.980)

Least Squares Estimation (via lm)

Estimate SE 95% Conf. Int.

𝛽% 0.361 0.772 (-1.155, 1.876)

𝛽! 0.140 0.116 (-0.087, 0.366)

𝛽$ 0.374 0.130 (0.116, 0.631)

𝛽. 0.291 0.116 (0.068, 0.514)

𝜎 0.829
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Specifying the Model in R (brms) with User-Defined Priors

require(brms)
fit_hci <- brm(
      data = HCI_Data, 
            family = gaussian(),
            hci ~ 1 + SPD + HCSE + HCOE, 
      prior = c(
                      prior_string("normal(0, 10)", class = "Intercept"), 
                      prior_string("normal(0, 10)", class = "b")
  ), 
      iter = 5000, 
            seed = 2024
      )
summary(fit_hci)

q The first version of the model used the default flat priors (uninformative) so the data “did most of the talking”

q How (if at all) do the results change if we start implement different priors?

q Sensitivity analysis

HCI% = 𝛽& + 𝛽!SPD% + 𝛽$HCSE% + 𝛽'HCOE% + 𝜖%

Note, brms uses SDs instead of variances so here we are 
assigning 𝑁(0, 100) priors to the intercept and 
regression slopes
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Visualizing the Posteriors & Diagnostic Checks
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Bayesian Output with Default Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.349 0.772 (-1.186, 1.877)

𝛽! 0.140 0.116 (-0.089, 0.373)

𝛽$ 0.374 0.130 (0.118, 0.628)

𝛽. 0.293 0.116 (0.062, 0.519)

𝜎 0.841 0.066 (0.723, 0.980)

Comparing Default Priors to 𝑵(𝟎, 𝟏𝟎) Priors

Bayesian Output with 𝑵(𝟎, 𝟏𝟎) Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.346 0.769 (-1.178, 1.860)

𝛽! 0.139 0.115 (-0.087, 0.365)

𝛽$ 0.376 0.131 (0.119, 0.635)

𝛽. 0.294 0.113 (0.068, 0.516)

𝜎 0.842 0.067 (0.722, 0.984)

Essentially the same!

qThis is not too surprising given that a 𝑁(0, 10) prior is relatively large given the 
magnitudes of the effects

q What if we use other more concentrated priors?
qRedid analyses with the following priors: 𝑁(0, 𝑣) where 𝑣 ∈
{1000, 100, 50, 20, 10, 5, 3, 1, 0.1}

HCI! = 𝛽" + 𝛽#SPD! + 𝛽$HCSE! + 𝛽%HCOE! + 𝜖!
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Impact of Priors on Posterior Mean
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q The priors have virtually 
no influence on the 
results for more variance 
value

q This suggests the results 
are robust to different 
prior choices

q The only exception is the 
𝑁(0, 0.1) prior which 
pulled the parameter 
estimate towards 0
q The 

q Similar patterns were 
observed for the other 
parameters



Sequential Posterior Updating / Accumulation of Evidence

H𝑃 𝜃 = 𝑃 𝜃 𝑦# ∝ 𝑃 𝑦# 𝜃 𝑃(𝜃)

Analysis 2 (accumulation of evidence)
q “Yesterdays posterior is tomorrow’s prior”

𝑃 𝜃 𝑦$, 𝑦# ∝ 𝑃 𝑦$ 𝜃 H𝑃 𝜃

Analysis 1 (What we’ve been doing so far)

𝑃 𝜃 𝑦#, 𝑦$ ∝ 𝑃 𝑦$ 𝜃 𝑃 𝑦# 𝜃 𝑃(𝜃)

q Technically, the above assumes conditional independence between 𝑦! and 𝑦$ given 𝜃) 
q In other words, 𝜃 completely describes the data generating process

qWe can continue to update our beliefs by treating the posterior as a prior in a 
future analysis! 

Updating our beliefs about parameters 
given the observed data (𝑦" is the dataset 
we’ve been analyzing up until now)

Continuously updating our beliefs when we 
have new information available (𝑦! is a new 
dataset that is collected at some point in the 
future)

A technical caveat
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Bayesian Output with Default Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.349 0.772 (-1.186, 1.877)

𝛽! 0.140 0.116 (-0.089, 0.373)

𝛽$ 0.374 0.130 (0.118, 0.628)

𝛽. 0.293 0.116 (0.062, 0.519)

𝜎 0.841 0.066 (0.723, 0.980)

Sequential Posterior Updating / Accumulation of Evidence

qResults from the previous analysis form 
the priors of the new analysis 
(empirical priors)

fit_hci_new <- brm(data = HCI_Data_New, 
                   family = gaussian(),
                   hci ~ 1 + SPD + HCSE + HCOE, 
                   prior = c(
                     set_prior("normal(0.349, 0.772)", class = "Intercept"), 
                     set_prior("normal(0.140, 0.116)", class = "b", coef = "SPD"),
                     set_prior("normal(0.374, 0.130)", class = "b", coef = "HCSE"),
                     set_prior("normal(0.293, 0.116)", class = "b", coef = "HCOE")
                   ), 
                   iter = 5000, seed = 2025)

New dataset from same population

HCI! = 𝛽" + 𝛽#SPD! + 𝛽$HCSE! + 𝛽%HCOE! + 𝜖!
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Sequential Posterior Updating / Accumulation of Evidence

Bayesian Output with Default Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.349 0.772 (-1.186, 1.877)

𝛽! 0.140 0.116 (-0.089, 0.373)

𝛽$ 0.374 0.130 (0.118, 0.628)

𝛽. 0.293 0.116 (0.062, 0.519)

𝜎 0.841 0.066 (0.723, 0.980)

Bayesian Output with Posterior Priors (via brms)

Post. Mean Post. SD 95% Cred. Int.

𝛽% 0.278 0.513 (-0.728, 1.282)

𝛽! 0.229 0.080 (0.070, 0.386)

𝛽$ 0.326 0.091 (0.145, 0.505)

𝛽. 0.285 0.074 (0.141, 0.429)

𝜎 0.817 0.065 (0.701, 0.957)

Original Analysis Analysis on New Data

qIn general, notice how the Posterior SDs and credible intervals are narrower 
q Our uncertainty about the effects decreases as we collect and analyze new data!

qThe credible interval for 𝛽! in the new analysis doesn’t contain 0
q Evidence of a positive effect of SPD on HCI!

HCI! = 𝛽" + 𝛽#SPD! + 𝛽$HCSE! + 𝛽;HCOE! + 𝜖!



44

Prior 

New Data 

Data

Posterior

New Data Posterior

Posterior

Sequential Posterior Updating / Accumulation of Evidence



Wrapping Up
q Bayesian statistics offers a flexible approach to modeling psychological data

q Construction
q Estimation
q Model fit, model comparisons, etc. 

q Incorporating substantive and domain expertise into an analysis in a 
principled way 

q Use of Bayesian statistics is becoming increasingly popular as packages like 
brms make it easy to estimate many models 

q Hopefully today’s workshop highlighted the usefulness of the Bayesian 
approach and motivated you to want to learn more!

qReminder: slides/code will be available at https://wpa2024bayesian.ajmquant.com/

https://wpa2024bayesian.ajmquant.com/
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Thank you!

Hyeri Hong, Ph.D.

Email: alfonso-martinez@uiowa.edu
Alfonso J. Martinez

Email: hyerihong@mail.fresnostate.edu

Please reach out if you have any questions!


